WL-TR-95-1167

SYNTHESIZING FIELD PROGRAMMABLE
GATE ARRAY CIRCUITRY USING C++

JOHN T. SPILLANE
DR MICHAEL A, ZMUDA

AUGUST 1995

FINAL REPORT FOR 03/31/95-08/31/95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7409

19960124 107

DIIC QUALELY IRGFECTED)

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the genmeral public, including
foreign natioms.

This technical report has been reviewed and is approved for publica-

T
JOHN T._SQILLANE, Design Engineer ﬁ%v -~ COVERT, Chief
Data & Signal Processing Section Information Processing
Technology Branch

tion.

Ul

CHARLES H. KRUEGER, Chief
Systems Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAT , WPAFB, OH 45433- 7409 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and ring the data needed, and completing and reviewing the ¢ollection of information. Send comments r

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

arding this burden estimate or any other aspect of this

DR MICHAEL A. ZMUDA

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
AUG 1995 FINAL 03/31/95--08/31/95
. 4. TITLE AND SUBTITLE SYNTHESIZING FIELD PROGRAMMABLE 5. FUNDING NUMBERS
GATE ARRAY CIRCUITRY USING C++ c
PE 61102
. PR 2300
6. AUTHOR(S) JOHN T. SPILLANE TA AA

Wy 05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7409

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7409

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

WL-TR-95-1167

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLITMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

cles to the use of an FCCM is program or instruction set development.

hardware instruction set generation from the programmer in much the same way a
user from a specific machine’s assembly language. This paper presents the details
. FCCM compiler and plans for future work.

!In recent years, systems which use Field Programmable Gate Arrays (FPGASs) to perform computations have been
shown to match or even exceed super computer levels of performance. These FPGA based custom computing
:machines (FCCMs) take advantage of an FPGA’s gate-level reconfigurability to implement instructions and architec-
tures specific to the problem being solved. The ability to tailor the hardware to a specific problem gives FCCMs a
great speed advantage over general purpose processors with fixed instruction sets. Currently, one of the largest obsta-

Since an FCCM is programmed at the gate level, the programmer must have detailed knowledge of both the algo-
rithm to be implemented and how to implement necessary operations (e.g. addition, subtraction, and multiplication)
required by the algorithm in the FCCM’s hardware. This design process is comparable to programming in assembly
language, though hardware instruction design is arguably more difficult. Recent research efforts have investigated the
. creation of a novel, symbiotic compiler which can simplify the development of programs for FCCMs by hiding the

traditional compiler isolates the
of the internal operation of this

14, SUBJECT TERMS

Field Programmable Gate Array, Computer Architecture,
Synchronous Data Flow

15. NUMBER OF PAGES
19

16. PRICE CODE

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASS

17. SECURITY CLASSIFICATION }18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

IFIED SAR

| NSN 7540-01-280-5500

o

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102 .

Contents

1 Introduction
1.1 Computational Model
1.2 FPGAs as Co-Processors
2 Symbiotic C++ Compiler
2.1 The var Class
2.1.1 Example of var Usage
2.2 FCCM Board Level Classes
2.3 FPGAs and Derived Classes
2.3.1 Pins and Package
2.3.2 CLB Array Sizing
2.3.3 Basic Functions of the xc4k Class
2.3.4 Linking vars to FPGA objects
3 Future Work
3.1 Additional Features
3.1.1 Mixed Vendor Boards
3.2 Optimizations
3.2.1 Optimization Based on a TmpVar class
3.3 Placement Based On Data Flow
4 Conclusions

O WO W N =

I T e T e
A WWLWWLDODDNDNO OO

Figures

Simple Data Flow Graph

Data Flow Graph reduced to Synchronous Data Flow
Design Flow for using FPGAs as Co-Processors
Hamming Distance Calculation

C Code for Hamming Distance Function

Circuit Implementation of Hamming Distance Calculation
Traditional Compiler Flow

c3 Compilation Flow

. Sample Operation Flow

10. Example ¢3 Program

11. FPGA Class Hierarchy

12. ¢3 Code Fragment

13. FPGA Class Definitions with Virtual Base Class General_FPGA

WOk WD =

i

o O SN VTR WWNND =

DY

1.0 Introduction

Field Programmable Gate Arrays (FPGAs) are hardware reconfigurable devices introduced in the

mid 1980s as single chip replacements for discrete digital logic components[2]. These devices
have become popular by reducing design cycle times, reducing board real-estate required for ran-
dom logic, and allowing quick changes in the logic after board fabrication. In the late 1980s,
engineers began using FPGAs to implement co-processor instructions. During that time the avail-
able gate capacities were relatively low when compared with FPGA processor boards which now
reach capacities in excess of 300,000 equivalent gates. By the year 2000, FPGA manufacturers
predict board capacities of 5 million or more equivalent gates. As FCCMs increase in complexity,
the difficulty of creating programs that effectively utilizes system resources also increases. This
drives the need for automated programming methods.

1.1 Computational Model

The computational model a system uses to solve problems or compute answers influences deci-
sions made during system design and programming. For example, a program written for a
sequential system tends to be different in syntax and/or organization when compared with the
same algorithm coded for a parallel machine. The computational model used during the creation

of the 3t compiler is synchronous data flow (SDF)[4]. In a pure data.flow machine [5], results
are computed as soon as the inputs to a operation become valid. SDF simplifies the general data
flow model by stating that the timing, i.e. when inputs become valid, is known. Unlike data flow,
SDF does not reduce latency, but allows high throughput while keeping the problem of compila-
tion more tractable.

Consider the data flow graph shown in Figure 1. In a data flow environment the addition is per-

A
B

C

Figure 1: Simple Data Flow Graph

formed as soon as the A and B inputs are available. Likewise, the subtraction is performed as
soon as C and the result of the addition operation are available. In SDF, clocked operations are

used to simplify synthesis. The SDF graph is shown in Figure 2. This graph assumes that A, B,
and C are all initially valid during the same clock cycle. Delay registers are used to ensure proper
data alignment in time, e.g. at the input to the subtraction operation. The latency introduced into
the operation by these added registers is acceptable only because without them the problem of

T- The ¢3 (see-three) compiler is short for CHAMP cc. The Configurable Hardware Algorithm Mappable
Preprocessor (CHAMP) is an FCCM based on Xilinx 4000 series technology. For more information of

CHAMP see [3]

.
o

C

i

Figure 2: Data Flow Graph reduced to Synchronous Data Flow

compilation and circuit synthesis is greater. Again, since the target system is a FCCM, it is possi-
ble to change the computational model at some point in the future.

1.2 FPGAs as Co-Processors

In recent years there have been a number of systems that have effectively used FPGAs as co-pro-
cessors to reduce program run-time up to 50 fold [6]. The idea for this type of system stems from

Coded
Algorithm

Algorithm coded in
high level language

Profiling allows the user

Compile

with Profiling to track which part of the
Option algorithm is taking the most
CPU cycles
y
Execute
Program

After execution, the user
determines from the profiling
information which portions of

the algorithm are to be implemented
in hardware

Implement
Bottleneck
in
Hardware

Figure 3: Design Flow for using FPGAs as Co-Processors

what computer scientists have known for quite some time: many programs spend a large percent-
age of time doing one particular operation or function. A hardware implementation of this speed

bottleneck in a co-processor can significantly reduce the total run time of a program. Figure 3
shows the process of locating and implementing speed bottlenecks in hardware. As an example
both a software and an FPGA hardware implementation of a Hamming distance function are

examined. Hamming distance is defined as the number of bits that are different in two words of
some known, equal length. To calculate the Hamming distance, the two words are compared bit
by bit for inequality and the number of ones, i.e. differing bits, in the resulting word are counted.

Assuming a word length of eight bits, an example Hamming distance calculation is shown in Fig-
ure 4.

| 01001100
11110000

10111100 Hamming Distance = 5

Figure 4: Hamming Distance Calculation

A C function to calculate Hamming distance is shown in Figure 5. This function takes two eight

unsigned char Hamming_Distance(char a, char b)
{

char xor_result;

unsigned char distance = 0;

int 1i;

xor_result = a * b;

for (i=0; i < 8; 1i++)

{
distance += xor_result & 1;
xor_result <<= 1;

3

return(distance);

Figure 5: C Code for Hamming Distance Function

bit arguments and computes the Hamming distance between the two words. Notice that the return
type is also an eight bit value. Although the return value will only take on values in the range
[0,8], most compilers do not allow the programmer to choose a type that is only one nibble, four
bits, wide. FCCMs are flexible in that a variable may be any number of bits, assuming that the bit
width is supported by the internal FPGA architecture. Unfortunately, not only is this low-level
design detail available to the FCCM programmer it also plays an important role in creating pro-
grams that fit within the confines of a particular FCCM. Elaborating, the traditional programmer
often chooses a variable of type ‘int’, typically represented with sixteen bits, whose value ranges
from -32768 to 32767. This type is often chosen even if the range of the object being stored is
known to range from [0,10]. It is simply a matter of convenience for the programmer to use type
“int’. In an FCCM, resources are limited and bit widths must often be chosen on an operation by
operation basis. This adds a level of complexity to FCCM programming that will not be dis-
cussed here.

A circuit implementing the Hamming distance calculation is shown in Figure 6. Again we note

I
o

[~
o

fbMeane

o' P
—

I
13

o
[N

8
g R

[~
e W

(=]
[« N

-4
~1

o
2

Figure 6: Circuit Implementation of Hamming Distance Calculation

that the FCCM is capable of outputting the result in the minimum number of bits needed for the
problem at hand. Assuming that each level of logic is clocked, this circuit would have a latency of
four clock cycles plus two clock cycles due to registers at the input and output pins. This results
in a total latency of six clock cycles. Examining only the inner loop of the C function that imple-
ments the same operation, twenty four operations are needed to solve this problem on a sequential
processor. Assuming the FPGA circuit is run at 25Mhz, the traditional processor would need to
run at 100Mhz to match the latency of the FPGA implementation. Also, as the bit width of the
Hamming Distance arguments increases, circuit growth follows the logy of the number of bits in

the argument whereas the number of operations required by the sequential processor grows lin-
early. Thus if the bit width of the arguments were doubled to sixteen, the FPGA circuit would
have a latency of five plus two, or seven clock cycles. The sequential loop will have an approxi-
mate latency of sixteen times three, or forty-eight clock cycles. Now the sequential processor
would need to be approximately seven times faster that the FPGA to give the same latency. This
means that the processor is running at 175 Mhz compared with the same 25Mhz FPGA.

Also, since the FPGA circuit is fully pipelined it can accept new inputs each clock cycle and, after
the latency period has passed, produce outputs on each clock cycle. So if the task were to com-
pute the Hamming distance on five pairs of sixteen bit numbers, the FPGA circuit would require
seven clock cycles as latency until the first result appears and four more clocks to produce the rest
of the results for a total of eleven clocks. The sequential machine would require five times forty-
eight operations, 240 operations, where the FPGA circuit requires only 11 clock cycles. To com-
pute the five results in a length of time on the order of the 25 Mhz FPGA, the processor would
have to run at over 500Mhz. The advantage of the FPGA as compared with the conventional pro-
cessor is clear.

2.0 Symbiotic C++ CompilerT

To reduce the time, effort, and expertise required to program an FCCM, a symbiotic compiler that
creates SDF circuitry from C++ code has been developed. This work stemmed from earlier work
in which the process of designing control chips for CHAMP was automated. The symbiotic com-
piler differs from a traditional compiler in that it has no front-end, i.e. pre-processor and parser.

The compilation flow for a traditional compiler is shown in Figure 7. With a traditional compiler,

Source .
Compiler|

Figure 7: Traditional Compiler Flow

the user inputs source code into the compiler and an executable program is output. The compila-
tion flow for the symbiotic compiler is shown in Figure 8. Here the code for the symbiotic com-

Source
Code

c3
Symbiotic
Compiler

Traditional Executable FPGA
Compiler ¢3 Program Configurations

Figure 8: ¢3 Compilation Flow

piler and the user’s source code are compiled together by a traditional compiler. The output of the
resultant program is configurations for various FPGAs within the FCCM. The CHAMP cc (c3)
compiler is a symbiotic compiler. The main advantage of this type of compiler is ease of develop-
ment. Since the symbiotic compiler is based on operator overloading, no parsing of input files is
required. The drawback to this type of compiler is the limited instruction set that the symbiotic
compiler can handle. In C++, only certain operators can be overloaded and no constructs, such as
a while loop, are overloadable. Therefore, the c3 compiler can only currently handle logical oper-
ations, addition, and subtraction with unsigned integers.

When c¢3 encounters an operation, the overloaded operation will flow as shown in Figure 9, "Sam-
ple Operation Flow". The overloaded operators are found in the var class which is discussed in
Section 2.1, “The Var Class”, on page 6. The overloaded functions within the var class directly
address functions found within the Target object which is discussed in Section 2.2, “FCCM
Board Level Classes”, on page 8. The Target object then calls a particular FPGA object in which
the operational circuitry will be implemented, in the case of Figure 9 this circuitry would be an

T The following discussion assumes a detailed knowledge of C++. For more information on the C++ lan-
guage and Object-Oriented Programming see [7][8][9]

Var Object
Overloaded Operator +

Target Object
Function Add(Var,Var)

FPGA Object

Var::BitQuery() Function Add(Var,Var)

Adder for
Targeted FPGA
Technology

Figure 9: Sample Operation Flow

adder. These FPGA objects and the use of the function var: :BitQuery () are discussed in Sec-
tion 2.3, “FPGAs and Derived Classes”, on page 9.

2.1 The var Class

The var class is a data abstraction that allows the user to deal with instructions that operate on
variables rather than FCCM gate level instructions operating on single bits. Currently the opera-

tors shown in Table 1 are implemented for unsigned integer arithmetic. With continued work, it

Operation Symbol
Left Shift <<
Right Shift >>
Logical AND &
Logical OR |
Logical XOR A
Logical NOT ~

Table 1: Currently Implemented Operations

Operation Symbol

Addition +

Subtraction -

Table 1: Currently Implemented Operations

would be possible to implement signed integer as well as fixed point arithmetic. C++ operators
which are currently thought to be possible to implement, but are not as yet implemented are listed

in Table 2. Though division is listed as possible, it is improbable that ¢3 will implement this oper-

Operation Symbol
Pre/Post Increment ++
Pre/Post Decrement --
Multiplication *
Division, Modulo /1, %
Comparisons ==, >=,<=,!,

&&=

Table 2: Possible Future Operations

ation until FPGA devices are large enough to handle operations the size of division in a fraction of
the space available in the device.

2.1.1 Exaimple of var Usage

An example c3 program is shown in Figure 10. In this program the target FCCM is the Xilinx
extern xcdkDemoBoard Target;

c3_main()

{

Var x,V¥,2;

b d
Y

Target.switches(1,2,3,4);
Target.switches(5,6,7,8);

4

X & Vi
Target.bin 2_left_T7seg(z);

cout << Target;

Figure 10: Example ¢3 Program

4000 series demo board. First notice that this program has no main() function. Instead, the
main () of a c3 program is named c3_main (). This function is then called from the main () that
resides within the ¢3 compiler code. In the first statement in the example program, var x,y,z;,
the user declares three variables of the class var. At this point the C++ program that has resulted
from symbiotic compilation has simply called the default var class constructor, var::vVar(),
three times. The next statement, x=Target.switches(1,2,3,4), shows the use of a Target

object. Target objects will be discussed in detail in Section 2.2; for now it suffices to say that
this statement links the variable x with four DIP switches found on the 4000 series demo board.
Similarly, the statement y=Target .switches (5,6,7,8) links the variable y with four separate
dip switches also on the board. The switches () function, which is specific to the Xilinx 4000
series demo board, does such bookkeeping tasks as setting the number of bits, and latency values
for both the x and vy variables.

The statement z=x&y is the first stand-alone C++ statement in the example program. This state-
ment by itself looks as if it could have come from any C++ program and, as a programmer would
expect, this statement assigns to the variable z the result of the logical ANDing of the variables x
and y. On a traditional processor, these variables might be of type char (8 bits) or type int (usually
16 bits), but with the var class any bit width, which need not be a power of two, is possible.

This statement, z=x&y, is also the first statement in the example program that uses an overloaded

operator. As shown in the high level diagram of Figure 9, the x&y statement will call the over-
loaded & operator for the var class, Var Var::operator &(var). This overloaded operator, in
turn, calls a function Target .and (). Again, notice that the var class is isolated from the particu-
lar Target object’s technology. That is, the Target FCCM is not tied to any particular FPGA
technology, although Xilinx 4000 series parts are the only devices for which functionality is cur-
rently implemented.

The next statement calls another demo board specific function, bin_2_left_7seg (). This func-
tion takes a four bit var and converts its value to logical levels suitable for driving the left seven
segment display on the demo board. It is important to note that Target level functions such as
switches () and bin_2_left_7seg () help to isolate the user from the specific architecture of the
Target system. In this case, it is no longer necessary for the user to know exactly to which pins
the switches on the demo board are connected, or that the LEDs of the demo board’s seven seg-
ment display are active low. This type of architectural information is included in the Target sys-
tem class definition so that a novice user is able to code programs for the system.

2.2 FCCM Board Level Classes

Figure 9 shows an example object of an FCCM board level class. This object is referred to with
the c3 reserved variable name Target. The Target object serves as the communication layer
between the var class and the FPGA class. Each overloaded operator in the var class calls a cor-
responding member function of the Target object. This mechanism allows the user to change the
hardware that c3 will generate circuitry for without having to modify the var class’s operators.
Target objects can range in complexity from a single FPGA system, such as the Xilinx 4000
series demo board, to a multiple FPGA system such as CHAMP.

In FCCMs such as CHAMP which contains multiple FPGAs, a c¢3 board level class must have a
partitioner, or board level placement routine, available to it. Currently this functionality is not
implemented as all test programs have been compiled for a single FPGA system. It is important
to note that board level partitioning in an SDF system should be coupled with logic generation
since different partitionings of a problem may require different levels of pipeline alignment due to
the registering of inputs and outputs at the chip level.

Once the board level object, referred to with the reserved variable name Target, has determined
within which FPGA a particular operation will be placed, the object calls the corresponding

FPGA operation. Given the adder example from Figure 9, the Target object would choose which
FPGA on the FCCM will implement the add. Then the Target object calls the add function
within that FPGA. The FPGA level add function currently places the generated circuitry in a
snake-like fashion within the FPGA. Internal FPGA placement based on a data flow diagram is

discussed in Section 3.0, “Future Work”.

2.3 FPGAs and Derived Classes

(:i class xcdk ::j

xc4003 xc4010 xc4013
xc4003pc84 xc4010mg208 xc4013mg208

Figure 11: FPGA Class Hierarchy

The class xc4k is shown as the top level class in Figure 11. As the top level class, xc4k defines
how functions are implemented in and the general structure of a Xilinx 4000 series FPGA. The
structure, as defined in xc4k, consists of a two dimensional array of configurable logic blocks
(CLBs) surrounded by what can be reduced to a linear array of input/output blocks (IOBs).

2.3.1 Pins and Package

After the family of FPGAs has been selected, the next level of separation is the number of pins
and the type of package for the part. The pins and package class fills the IOB array with informa-

tion specific to the particular combination. For example, the pins that can be used to drive global
clock buffers change from part to part. This class is used to track these differences as well as
package specific information such as unusable pins.

2.3.2 CLB Array Sizing

The pins and package level class, e.g. ma208, is still an abstract class. Objects at this level con-
tain no information regarding the number of CLBs within the part. This parameter, the number of
rows and columns within a particular device, forces a design decision. One choice was to have
the user declare a part as mq208 part(24,24). Here, the arguments to the mq208 constructor
give the number of rows and columns in the device. The second option was to use the C++ class
inheritance methodology to place these parameters into their own class from which a device level
class would be derived. By doing this the declaration of a Xilinx 4013 part simplifies to
xc4013mg208 part. It was decided that this method of declaration was more descriptive so the
abuse of the class structure, using a class only to hold parameters, is overlooked.

2.3.3 Basic Functions of the xc4k Class

There are three functions basic to the xc4k class: placement, clock selection, and logic synthesis.
The placement function is used to position generated logic inside the FPGA’s matrix of CLBs.
The clock selection function allows the user to specify which pin, or internal oscillator, will act as
the clock for the circuits within the FPGA. The logic synthesis function is actually a set of func-
tions where each function handles the synthesis of a particular type of operation.

2.3.4 Linking Vars to FPGA objects

When a particular logic synthesis function within a xc4k object is invoked, the function generally
requires information about its operands. If the compiler is executing the statement a=b+c, the
xc4k add function will be called with the vars b and ¢ as arguments. The add function will need
details such as the bit widths, sign values, and shift values of b and c. Other functions will require
this same type of information about their arguments, though how the bit level information affects
the operation implementation can vary.

The function Var: :query_bit (int) is used to isolate the FPGA class from low-level details of
the var class. This function returns a BitQuery structure which include information that

~ describes a particular bit of the var as well as on which net that bit of the var is located. Figure

12 shows a ¢3 code fragment that will be used to investigate the operation of the
Var::query_bit (int) function. Here b and c are four bit, unsigned integers. The Var b has
been shifted left by one bit, and is then added to c. Within the add function there is a loop which
will examine bit by bit the two arguments to be added. Code within this loop makes decisions

based on the types of bits that are presented to the operation. Listed in Table 3 are the results for

10

Var a,b,c;

b=Target.switches(1,2,3,4);
c=Target.switches(5,6,7,8);

b <<= 1;

a=b+c;

the repeated calls to Var: :query_bit (int). Resulting circuitry for the adder is affected by the

Figure 12: ¢3 Code Fragment

Bit Number var b State Var c State
0 INT_FILL_ZERO VALID_BIT
1 VALID_BIT VALID_BIT
2 VALID_BIT VALID_BIT
3 VALID_BIT VALID_BIT
4 VALID_BIT EXTEND_ZERO
5 EXTEND_ZERO | EXTEND_ZERO

Table 3: Example query_bit () Results

states of b and c. For example, the shifting of b causes the first bit of that var, bit 0, to have the
state INT_FILL_ZERO. In this state, the net returned by query_bit () is invalid. The add func-
tion must know to create a local ground net for use as input to the adder at this stage. Similarly,
the adder must understand that when both arguments are in the EXTEND_ZERO state all bits in

the var arguments have been examined.

11

3.0 Future Work

3.1 Additional Features

3.1.1 Mixed Vendor Boards

It is given that there are certain functions which are basic to a particular family of FPGAs and that
there are other functions a user may want to implement with FPGAs that may be described opti-
mally by these basic functions. Through the use of classes and derivation, ¢3 could support a
multi-vendor FPGA environment (i.e. a board with FPGAs from more than one vendor). This
can be accomplished for some set of instructions by providing core instructions at the vendor fam-
ily level, while describing more complex functions at a higher class level using virtual definitions
for the basic family functions.

Shared definitions declared

General_ FPGA

4000 Series
Object Definitions

2c Series
Object Definitions

Figure 13: FPGA Class Definitions with Virtual Base
Class General_FPGA

With a class structure as shown in Figure 13, high level functions such as HammingDistance ()
could be written for the abstract class General_rpca. Once objects derived from this class are
fully defined, such as at the xc4010mq208 level, the HammingDistance () function would be
defined using the basic FPGA functions that were defined at the xc4k class level. Similarly, any

fully defined vendor part that has the basic operations defined, as shown in Table 1 and Table 2,
and is descendant from the General rpca class will have a defined HammingDistance() func-
tion.

The General_rpGa class concept uses classes to isolate the vendor specific functions, which tend
to be very basic functions, from those higher level functions that can be reused across vendor
lines. Some functions may not be vendor specific, but cannot be moved to the General Frca
class without optimization at the FPGA level. An example is random logic. Different vendors
have different block structures within their FPGAs, e.g. the Xilinx CLB vs. ATT’s PFA. Thus

12

describing a method for a four input AND operation will be different between vendors, or part
families which offer course vs. those who offer fine grain building block structures.

3.2 Optimizations

3.2.1 Optimization Based on a TmpVar class

The use of operator overloading in the Var class creates a direct mapping between functional
statements in ¢3 code and circuitry implemented in the FPGA. This direct mapping is not always
optimal. Consider the statement a=b&c&d. The circuit that a designer would create for this
would be a three input AND gate. In Xilinx 4000 series FPGAs, each bit three input AND gate
can be implemented in one half of a CLB. Thus if b,c, and d are each unshifted and four bits wide
the three input AND operation can be implemented in only two CLBS. Currently, ¢3 will imple-
ment c&d creating an intermediate result which will then be ANDed with b. This results in four
CLBs being used as two input ANDs and two CLBs being used to time align b with the result of
c&d for a total of six CLBs. By creating a second class, tmp_var, operations such as this could be
optimized for the targeted FPGA architecture. By changing functions such as Var Var::operator
&(Var) to TmpVar Var::operator &(Var), and then defining methods TmpVar Var::operator
&(TmpVar) and similar overloads for the TmpVar class, ¢3 could optimize its implementation of
logical functions without defining methods such as Var Var::and3(Var, Var).

3.3 Placement Based On Data Flow

Currently the placement function for the xc4k class places generated circuity in a snake-like fash-
ion within the CLB array. This type of placement leads to circuits which may be either
unroutable or not meet timing constraints. Having c¢3 create a run-time data flow diagram and
then place based on the origin and destination of signals should create placed designs that are sim-
ilar to those currently done manually.

13

4.0 Conclusions

‘A novel, symbiotic compiler for the creation of FPGA circuitry in the SDF domain from C++
source code has been developed. The compiler is user extensible and includes class structures
that can be used as a basis for the development of other FPGA related tools. Unfortunately, the
compiler does not completely eliminate the need for knowledge of FPGA based computing. For
example, the programmer must understand that the generated circuitry will be fully pipelined and
therefore the coded operations will be executed on each clock cycle. Also, if the generated cir-
cuitry is not fully functional, debugging may prove difficult. Work to add functionality as dis-

cussed in Section 3.0, “Future Work” is ongoing.

14

(1]

(2]
(3]

(4]
[5]

(6]

[7]
(8]

[9]

D.T. Hoang, “Searching Genetic Databases On Splash 2”, Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines, pp. 185-191, April 1993.

The Programmable Logic Data Book, Xilinx Inc., 1994.

B. Box, “Field Programmable Array Based Reconfigurable Preprocessor”, Proceedings of
IEEE Workshop on FPGAs for Custom Computing Machines, pp. 40-48, April 1994.

E.A. Lee, “Synchronous Data Flow”, Proceedings of the IEEE, September 1987.

AH. Veen, “Dataflow Machine Architecture”, ACM Computing Surveys, pp. 365-396,
December 1986.

P. Athanas, H. Silverman, “Processor reconconfiguration through instruction-set meta-
morphosis”, IEEE Computer, pp. 11-18, March 1993.

S.B. Lippman, C++ Primer, Addison-Wesley Publishing Company, 1991.

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley Publishing Com-
pany,1987.

G. Booch, Object Oriented Design With Applications, Benjamin-Cummings Publishing
Company, 1991.

15

